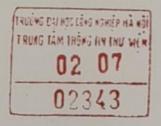
Artificial Intelligence for Robotics

Build intelligent robots that perform human tasks using AI techniques



By Francis X. Govers

Artificial Intelligence for Robotics

Build intelligent robots that perform human tasks using Al techniques

Francis X. Govers

BIRMINGHAM - MUMBAI

Artificial Intelligence for Robotics

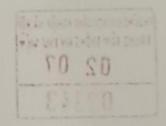
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Namrata Patil
Content Development Editor: Sharon Raj
Technical Editor: Mohit Hassija
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tom Scaria
Production Coordinator: Arvindkumar Gupta


First published: August 2018

Production reference: 1290818

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-78883-544-2

www.packtpub.com

Table of Contents

Preface	1
Chapter 1: Foundation for Advanced Robotics and Al Technical requirements	7 8
The basic principle of robotics and Al	8
What is AI (and what is it not)?	9
There is nothing new under the sun	11
The example problem – clean up this room!	12
What you will learn	14
Artificial intelligence and advanced robotics techniques	15
Introducing the robot and our development environment	17
Software components (ROS, Python, and Linux)	19
Robot control systems and a decision-making framework	21
Soft real-time control	21
Control loops	22
The robot control system – a control loop with soft real-time control	33
Reading serial ports in a real-time manner	36
Summary	40
Questions	40
Further reading	41
Chapter 2: Setting Up Your Robot	43
Technical requirements	43
What is a robot?	44
Robot anatomy – what are robots made of?	44
Subsumption architecture	48
Software setup	oliento 51
Laptop preparation	52
Installing Python Installing ROS on the laptop	52 53
Setup of Raspberry Pi 3	56
VNC	57
Setting up catkin workspaces	58
Hardware	59
Beginning at the beginning – knolling	59
Assembling the tracks	60
Mounting the tracks	62
Arm base assembly (turntable)	64
Arm assembly	66
Wiring	69

Summary Questions	70
Further reading	71
	71
Chapter 3: A Concept for a Practical Robot Design Process	73
A systems engineering-based approach to robotics Our task – cleaning up the playroom	73
Use cases	74
The problem – part 1	75
Who – the robot	75 77
What – pick up toys and put them in the toy box	77
What - pick up and put away in the toy box the items that were not previously in	
the room	78
When – after the grandchildren have visited and they have left, continue to pick up toys until there are none left	70
When - when I (the user) tell you to, and don't stop until there are no more toys	78
to be found	78
Where – the game room upstairs	79
The problem – part 2	80
Who - the robot, the user (granddad), and the grandchildren	80
What – receive commands and verbally interact (hold a conversation) with children, which must include knock-knock jokes	24
When – as requested by the robot controller, then when the child speaks to the	81
robot	82
Where – in the game room, within about six feet of the robot	82
What is our robot to do?	82
Storyboards	86
Storyboard – put away the toys	86
Project goals	98
Decomposing hardware needs	98
Breaking down software needs	99
Writing a specification	102
Summary	104
Questions	104
Further reading	105
Chapter 4: Object Recognition Using Neural Networks and Supervised	
Learning	107
Technical requirements	108
The image recognition process	
The image recognition training and deployment process – step by step	108
Image processing	111
Convolution	112
Artificial neurons	114
The convolution neural network process	116
Build the toy/not toy detector	126
Using the neural network	135

Summary	1 Processing the image
Questions	go technique no Nagwien letten est gritiell
Further reading	Convolutional neutral network robot control
	· Kinning
Chapter 5: Picking up the Toys	another One
Technical requirements	1 Eurithor reading
Task analysis	vew A social Teather S veto 1
Setting up the solution How do we pick actions?	Treching the contract of
Summary of robot arm learning	g process 1
Teaching the robot arm	1
Version one – action state rein	
Adaptive learning rate	1
Q-learning implementation	t Entropy
Version 2 – indexed states and	d actions 1
Genetic algorithms	Rendem forests
Other robot arm machine-lead	
Google's SAC-X	mrinogla "A enT
Amazon Robotics Challenge	D* (D-Star or D)mamic A*)
Summary	GPS path finding does not use a map!
Questions	Summary
Further reading	ancissuo
Chapter 6: Teaching a Robot to I	Listen
Technical requirements	Technical requirements
Robot speech recognition	
What are we doing?	What is an artificial personality?
Speech to text	anilahumia ta asanina han tan nati
Intent	Anidor to estable on learning
Mycroft	drawn anitoms and animal
Hardware	Praying use enabled of human behavior
Mycroft software	Literary a model of remanding into over the
Skills Dialogs	Personality construction – building blocks 1
Telling jokes – knock, knock	Context
Receiving jokes – who's there's	
Summary	
Questions	labora politoria memudi arti
	points notice that insmulti
Further reading	2
Chapter 7: Avoiding the Stairs	2
Technical requirements	onlbno mila
Task analysis	2
What is SLAM?	chonsoles our elementation on leide.
Alternatives for navigation	Conclusions about our Journey
Neural networks	Carpers in robotics

Processing the image	215
Training the neural network for navigation	218
Convolutional neural network robot control implementation	223
Summary	227
Questions	228
Further reading	228
Chapter 8: Putting Things Away	229
Technical requirements	230
Task analysis	231
Decision trees	231
What do we mean by pruning?	233
Self-classifying decision trees and Al tools	236
Entropy One hot encoding	244 245
Random forests	250
Grid searching and A* (A-Star)	251
The A* algorithm	257
D* (D-Star or Dynamic A*)	260
GPS path finding does not use a map!	261
Summary	263
Questions	264
Further reading	264
Chapter 9: Giving the Robot an Artificial Personality	265
Technical requirements	265
What is an artificial personality?	266
The Turing test	268
The art and science of simulation	269
An emotion state machine	273
Playing the emotion game	276
Creating a model of human behavior	279
Integrating artificial personality into our robot	279
Personality construction – building blocks	280
Context Under construction	284
	285
The robot emotion engine The human emotion model	290
Human information storage	292 293
Context memory	294
Questions	295
Further reading	296
Chapter 10: Conclusions and Reflections	297
Conclusions about our journey	300
Careers in robotics	300

Issues in AI – real and not real	302
Some very brief words about robots and Al phobia	304
Understanding risk in Al	307
Final words	309
Summary	309
Questions	310
Further reading	310
Assessments	311
Other Books You May Enjoy	323
Index	327

Preface

The objective of this book is to deliver exactly what is on the cover – *Artificial Intelligence for Robotics*. The emphasis is on machine learning techniques applied to ground mobile robots. The book starts with professional robot design principles that have been scaled down for smaller robot projects. The AI section begins with convolutional neural networks for object recognition and continues with reinforcement learning and genetic algorithms. The robot gets a voice and learns to tell jokes using AI-based voice recognition that can discern user intent. The book introduces a novel way to navigate without a map using a literal divide and conquer program that uses the upper part of the room to remember paths, and the lower part of avoid obstacles. The book demonstrates how path planning, decision trees, object classification, and navigation are all part of the same problem set. We finish by giving the robot an artificial personality. The final chapter concludes with thoughts on the future of robots and gives advice on robotics as a career.

The entire book is built around a single fun example task, which is to design and build a robot that can pick up toys in an indoor, unstructured environment. As you will learn, this project is anything but easy.

Who this book is for

This book is designed for intermediate to advanced robotics researchers, professionals, and hobbyists, as well as students who have worked past the basics of robotics and are looking for the next step in their education and skill set.

Readers should be familiar with Python and the Robotics Operating System (ROS), as well as Linux. Advanced math is most definitely not required to get a lot out of this book.

What this book covers

Chapter 1, Foundation for Robotics and AI, introduces artificial intelligence (AI) and covers the basics of robotics as applied in this book. The chapter also introduces the AI framework used, which is the **Observe-Orient-Decide-Act** (OODA) model, and soft real-time control.

Chapter 2, Setting Up Your Robot, covers the robot architecture, ROS, and setting up the software and hardware, including the construction of the robot example for the book.

Chapter 3, A Concept for a Practical Robot Design Process, introduces a simplified systems approach to robot design that combines use cases (from systems engineering) and storyboards (from Agile development) to give the reader a structure and a process to use when solving problems with robots and AI.

Chapter 4, Object Recognition Using Neural Networks and Supervised Learning, teaches how to build an artificial neural network. Readers will learn the basics of image recognition as well as the training and evaluation of neural networks using Keras and Python.

Chapter 5, Picking Up the Toys, introduces techniques that allow the robot to learn for itself how to user its robot arm. The key technique is to have a mechanism for the robot to score how well it does. We explore reinforcement learning and dive into Genetic Algorithms.

chapter 6, Teaching the Robot to Listen, We develop on top of a voice-based command system, a type of digital assistant that uses AI techniques to understand words and divine the intent of the speaker. Basic concepts of speech recognition and natural language processing are introduced, such as context, knowledge bases, intent recognition, and sentence reconstruction. We teach the robot to both tell and understand knock-knock jokes.

Chapter 7, Avoiding the Stairs, helps the readers understand robot navigation, including SLAM. It will help you navigate the robot using a combination of two techniques: Floor Finding for obstacle avoidance, and Neural Network Image recognition for learned navigation without a map.

Chapter 8, Putting Things Away, covers path planning, decision trees, classification techniques, wave front, the A* (A star) and D* (D star) algorithms, and node-based planners.

Chapter 9, Giving the Robot an Artificial Personality, describes simulation and Monte Carlo modeling, the Robot Emotion Engine, the Human Emotion Model, and integrating personality rules into a chatbot-based conversation engine.

Chapter 10, Conclusions and Remarks, has some words about the future of AI and robotics, as well as advice about robotics as a career.